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Abstract  

QBism is one of the main candidates for an epistemic interpretation of quantum 

mechanics. According to QBism, the quantum state or the wavefunction 

represents the subjective degrees of belief of the agent assigning the state. But, 

although the quantum state is not part of the furniture of the world, quantum 

mechanics grasps the real via the Born rule which is a consistency condition for 

the probability assignments of the agent. In this paper, we evaluate the 

plausibility of recent criticism of QBism. We focus on the consequences of the 

subjective character of the quantum state, the issue of realism and the problem 

of the evolution of the quantum state in QBism. In particular, drawing upon 

Born’s notion of invariance as the mark of the real, it is argued that there is no 

essential difference between Einstein’s program of ‘the real’ and QBists’ realism. 

Also, it will be argued that QBism can account for the unitary evolution of the 

quantum state.  
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1. Introduction  

In recent times we have been witnessing a turn towards epistemic interpretations 

of quantum mechanics. According to all these interpretations the quantum state 

somehow represents the knowledge, information or beliefs of the user of 

quantum mechanics. QBism is one such interpretation. Other notable epistemic 

interpretations include Rovelli (1996); Zeilinger (1999, 2005); Healey (2012); 

Friederich (2015); Mueller (2017); Brukner (2017) and Boge (2018). In this respect 
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it should be noted that there are in general three options for interpreting 

quantum mechanics (Leifer 2011):  

1. The quantum state is epistemic and there is some underlying ontic state. 

2. The quantum state is epistemic but there is no deeper underlying reality. 

3. The quantum state is ontic.  

Consequently, it is worth examining the prospects for the epistemic interpretation 

as a viable interpretation of quantum mechanics. In this article, we focus on the 

status of QBism as a candidate among them.  

QBism is an interpretation of quantum mechanics and more broadly a philosophy 

of science inspired by the implications of quantum information theory (Fuchs 

2002). Its main proponents are Christopher Fuchs, Rüdiger Schack and David 

Mermin (see e.g. Mermin (2012, 2014); Fuchs (2010); Fuchs, Mermin, and Schack 

(2014)).   

According to QBism, the quantum state or the wavefunction represents the 

subjective degrees of belief of the agent assigning it. The quantum state is not 

part of the furniture of the world. On the other hand, the quantum system is an 

objective element of reality and part of the stuff of the world. Quantum 

mechanics is about the actions or measurements of the agent on the quantum 

system and the reactions she receives from the quantum system in the form of 

measurement outcomes. For QBists, as Fuchs et al. (2014) put it, ‘quantum 

mechanics is a tool anyone can use to evaluate, on the basis of one’s past 

experience, one’s probabilistic expectations for one’s subsequent experience’. In 

other words, quantum mechanics provides the agent with coherence conditions 

for assigning probabilities (Fuchs and Schack 2018). This coherence condition is 

fulfilled through the Born rule. Quantum mechanics advises the agent to assign 

and update her probabilities so that the Born rule is satisfied. This normative 

character of the Born rule is an important tenet of QBism. Being normative, the 

Born rule neither describes how nature actually is, nor does it tell nature what to 

do. It is rather an ideal relation an agent strives for in her probability assignments. 
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The importance of measurement for QBism links it with Bohr and Copenhagen-

type interpretations.2 This centrality of measurement is an essential element of 

what is known as operationalism. However, for QBists, quantum theory is not just 

about measurements or a tool to predict measurement outcomes. QBism is a 

realist rather than an instrumentalist program as will be explained in the course of 

the paper. 

Its proponents believe that QBism solves the longstanding puzzles of quantum 

mechanics such as the collapse of the wave function and nonlocality. However, 

QBism is not without its critics. There have been critical stands toward QBism in 

the literature (see e.g. Timpson (2008); Bacciagaluppi (2014)). Recently, Brown 

(2017) has put forward a critical review of QBism which improves upon some 

points in Timpson’s 2008 critique and also offers new lines of attack. The aim of 

this paper is to evaluate the plausibility of Brown’s arguments against QBism.  

The structure of the paper is as follows. In section 2, Brown’s argument for 

considering the quantum state as part of the stuff of the world is evaluated and 

rejected. Section 3 offers an answer to Brown’s criticism that QBism faces an 

explanatory gap regarding the objective description of the world. Sections 4 and 5 

contain the heart of the paper. In section 4, drawing upon Born’s notion of 

invariance as the mark of the real, it is argued that there is no essential difference 

between the Einstein’s program of ‘the real’ and the QBists’ program. In the next 

section, it will be argued that QBism can account for the unitary evolution of the 

quantum state. Finally, in Section 6, we conclude with the findings of the paper.  

2. Are quantum states part of the stuff of the world?  

Brown claims that there are powerful plausibility arguments for the view that the 

quantum state is something real and,  

‘They almost all have to do, in one way or another, with quantum phase, with the 

fact that the wavefunction, in its relation to probability, is strictly a (generally 

complex) probability amplitude: it has more structure than a probability 

distribution does.’ (Brown 2017; 5) 
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So, according to this argument, the wavefunction has properties such as 

interference and entanglement which, it is claimed, to explain them one has to 

regard the wavefunction as something real, i.e., as describing or representing the 

way the world is. However, QBists maintain that quantum states are degrees of 

belief of an agent concerning her measurement outcomes. A quantum state is a 

catalogue of beliefs. But if so, there seems to be an ‘explanatory deficit’ in QBism 

(Timpson 2008). For example, consider interference phenomena. The proponents 

of an explanatory deficit in QBism claim that it could explain why an agent would 

believe in interference phenomena but could not explain why these phenomena 

occur. It seems that the quantum state has properties such as interference which 

could not be regarded as beliefs. Therefore, the quantum state is more than a 

subjective catalogue of beliefs. ‘It has more structure than a probability 

distribution does’. 

However, as will be shown below, the response to the objection that the 

quantum state is a probability amplitude and consequently more than a 

probability distribution lies in the fact that we could express the quantum state in 

terms of a pure probability distribution using minimal informationally complete 

(MIC) measurements (DeBrota et al., 2019; 2020). Or, we could give the Born rule 

in terms of pure probabilities using symmetric informationally complete (SIC) 

measurements (Fuchs 2017b).   

Consider a quantum system with a 𝑑-dimensional Hilbert space 𝐻𝑑  , and suppose 

that there is a SIC measurement for it. Let us call its outcomes 𝑂𝑖  , 𝑖 = 1, … , 𝑑2.3 A 

SIC is a set of 𝑑2 rank-one projection operators Π𝑖 =   𝜓𝑖  𝜓𝑖
   such that (Appleby 

et al., 2017):  

𝑡𝑟 Π𝑘Π𝑙 =
𝑑𝛿𝑘𝑙 + 1

𝑑 + 1
                                                                                                         1  

Such a set of operators when rescaled appropriately form a positive-operator-

valued measure (POVM), i.e.,  
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 𝑂𝑖

𝑖

=  
1

𝑑
Π𝑖

𝑖

= 𝐼                                                                                                         (2) 

Moreover, these operators are linearly independent and form a complete basis 

for the space of Hermitian operators, so that the probabilities for the outcomes of 

a SIC measurement 𝑝(𝑂𝑖) determine the quantum state 𝜌. That is, if 

𝑝 𝑂𝑖 =
1

𝑑
𝑡𝑟 𝜌Π𝑖                                                                                                             (3) 

then 

𝜌 =    𝑑 + 1 𝑝 𝑂𝑖 −
1

𝑑
 Π𝑖

𝑑2

𝑖=1

                                                                                      (4) 

Furthermore, using equation (4), we can express the Born rule directly in terms of 

probabilities, without ever invoking amplitudes. For a quantum state 𝜌 and a 

measurement  𝐸𝑗  , the Born rule gives the probabilities of the measurement 

outcomes according to  

𝑄 𝐸𝑗  = 𝑡𝑟 𝜌𝐸𝑗                                                                                                                  (5) 

Substituting equation (4) in the formula (5) gives (Fuchs and Schack 2013; Fuchs 

2017b):  

𝑄 𝐸𝑗  =    𝑑 + 1 𝑝 𝑂𝑖 −
1

𝑑
 𝑝 𝐸𝑗  𝑂𝑖 

𝑑2

𝑖=1

                                                                 (6) 

In the above equation, we have  

𝑝 𝐸𝑗  𝑂𝑖 = 𝑡𝑟 𝐸𝑗Π𝑖                                                                                                          (7) 

which is a conditional probability for 𝐸𝑗  upon having obtained 𝑂𝑖 . This is because 

an agent performing a SIC measurement on a system with state 𝜌 and then going 

to the measurement  𝐸𝑗  , has to update from 𝜌 to Π𝑖  using Lüders rule.     
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But, one might object that there is no proof for the existence of SICs in all 

dimensions.4 However, it is not fatal to the above argument as one could express 

the Born rule using any informationally complete POVM which are known to 

always exist (DeBrota and Stacey 2019). The only difference is that in this case the 

formula for the Born rule would be more complicated. Still, the concepts are the 

same. Here, it should be emphasized that for QBists it is the Born rule that is the 

fundamental element of quantum mechanics, not the POVMs or the quantum 

states. The distinctive structure of the Born rule in contrast to the classical Law of 

Total Probability is what gives quantum mechanics its characteristic features, 

notably its Hilbert space structure (Fuchs and Stacey 2019).   

Moreover, why does the Born rule have such a central role in the formalism of 

quantum mechanics? The Born rule allows calculating probabilities using the 

quantum states. Conversely, assigning probabilities for any sufficiently rich set of 

measurements, or even for a single but informationally complete measurement 

as we have shown, is mathematically equivalent to assigning a quantum state 

itself. The two kinds of assignments determine each other uniquely (Fuchs 2010). 

Therefore, as Boge puts it:  

‘There are reasons to suspect that QM is an inherently probabilistic theory, and 

depending on one’s interpretation of probability (or the probabilities at play, at 

any rate) this could again be fleshed out to mean that knowledge or information 

or belief. . . are at stake in some sense in the interpretation of QM all along.’ 

(Boge 2018; 290) 

 

But, if the quantum state is epistemic and represents the beliefs of the agent 

assigning the quantum state, what are these beliefs about? And since the 

quantum state is the essential element of quantum mechanics, this amounts to 

the following question: what is quantum mechanics about? We turn to that in the 

next section.   

 

3. What is quantum mechanics about according to QBism?  

                                                             
4
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According to a common understanding, science is about describing an external 

mind-independent world without any recourse to the observer. In other words, 

science is about an objective world by virtue of eliminating the role of the 

observer in the scientific enterprise. However, QBists believe that this is a 

misunderstanding of science ‘because everything any of us knows about the 

world is constructed out of his or her individual private experience, it can be 

unwise to rely on a picture of physical world from which personal experience has 

been explicitly excluded, as it has been from physical science’ (Fuchs et al., 2014). 

They argue that QBism corrects this misconception by putting the observer back 

into science (Mermin 2014). In particular,  

‘A QBist takes quantum mechanics to be a personal mode of thought – a very 

powerful tool that any agent can use to organize her own experience. … But 

quantum mechanics itself does not deal directly with the objective world; it deals 

with the experiences of that objective world that belong to whatever particular 

agent is making use of the quantum theory.’ (Fuchs et al. 2014; 750)  

What does it mean that quantum mechanics is a personal mode of thought? In 

QBism, any agent who uses quantum mechanics models all phenomena except 

her direct internal awareness of her private experience according to it. To do this, 

she relies on her past experience to assign quantum states to her systems of 

interest. The quantum states are probability assignments which express the 

agent’s probabilistic expectations for her future experience. From the QBist’s 

subjective view on probabilities it follows that the agent’s probability assignments 

express her degrees of belief about her future experience.  

Although, Brown shares the subjective interpretation of probability with QBism, 

he does not accept  

‘the further inference in QBism that our scientific reasoning should primarily be 

about personal experiences, our “beliefs”, and not the objective world’. (Brown 

2017; 15)   

Brown’s examples of what constitutes a description of the objective world are 

interesting and deserve attention in their own right for what follows. He mentions 
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the explanation of what has actually happened in the early universe and what has 

actually been happening inside the stars since they are examples of what science 

should try to tell us about the objective world. According to QBism, what science 

has to tell us on these matters are models constructed to account for current 

astrophysical data and observations. But, Brown claims that here ‘we seem to be 

left with an explanatory gap’ (ibid.). He means that the QBist’s answer leaves 

unexplained what was going on in the early universe or has been going on inside 

the stars. From this viewpoint, science should give us a description of the world 

according to what Pauli calls ‘the ideal of the detached observer’:  

‘To put it drastically the observer has according to this ideal to disappear entirely 

in a discrete manner as hidden spectator, never as actor, nature being left alone 

in a predetermined course of events, independent of the way in which the 

phenomena are observed.’ (Pauli, as quoted in Fuchs 2017b; 23) 

Interestingly, Pauli notes that the historical origin of this ideal goes back to 

celestial mechanics. Note that Brown’s examples are also taken at least partly 

from celestial mechanics.  

However, as Pauli emphasizes, quantum mechanics forces us to abandon this 

ideal of the detached observer. This is formally expressed by the reduction of 

wave packet upon measurement. Accordingly, there is an inevitable and 

unpredictable change of the state of the system upon measurement. This for 

Pauli implies the abandonment of the idea of the detachment of the observer 

from the course of physical events outside herself. Why? It is because for Pauli as 

for QBists the measurement instruments are literally extensions of the agent. In 

order to illustrate the point of the argument, let us first look at what Bohr has to 

say about the ideal of the detached observer:  

‘We have in quantum physics attained the same goal [of keeping the ideal of the 

detached observer] by recognizing that we are always speaking of well defined 

observations obtained under specified experimental conditions. These conditions 

can be communicated to everyone who also can convince himself of the factual 

character of the observations by looking on the permanent marks on the 

photographic plates.’ (Bohr, as quoted in Fuchs 2017b; 23) 
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So, according to Bohr’s argument, the detachment of the observer from the 

course of physical events outside herself is secured through the elimination of the 

subjective elements in the account of experience. That is, the experimental 

arrangement is independent from the whim of the agent in the sense that its 

factual character could be checked by everyone by looking at the permanent 

marks obtained through the experiment.  

But, as Pauli emphasizes, reference to experimental conditions is ‘information on 

the observer’ and establishment of an experimental arrangement is an ‘action of 

the observer’ (Fuchs 2015; 46). As Fine (1986; 155) puts it, ‘the probabilities of the 

theory are generally understood as probabilities for various measurement 

outcomes and, so understood, suppose a prearranged apparatus for 

measurement – and hence a measurer-observer of some sort’. Reference to 

factual character of the observations obtained under well defined experimental 

conditions could eliminate the role of this or that observer but in no way could 

eliminate the subjective element in general. The establishment of the 

experimental arrangement is in a sense the embodiment of the observer.   

According to QBism, the experimental apparatus are the extensions of the agent 

in the sense that the outcomes of the experiments carried out by those apparatus 

are personal experiences of that agent. That is why Bohr (1949) insists on using 

‘unambiguous language with suitable application of the terminology of classical 

physics’ to express the set-up and outcomes of the experiments. As Mermin puts 

it:  

‘Ordinary language was enormously important to Bohr. An essential part of an 

experiment was reporting it to others. I always found this puzzling. If the outcome 

of an experiment is an objective classical fact, why is it so important to be able to 

communicate it to other people in ordinary language? Why can’t they just look for 

themselves?’ (Mermin 2018; 20) 

The QBists’ answer is that since the outcomes of the experiments are the 

personal experiences of the agent using an unambiguous language is the only way 

to communicate them. For QBists, “Wigner’s friend” (Wigner 1961) shows that we 

should recognize as fundamental rather than paradoxical the outcomes of 
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experiments being personal experiences of the agent carrying out the 

experiment. In Wigner’s friend scenario, Wigner and his friend assign different 

quantum states to the same quantum system. Now the question is this: which 

one is correct? If the outcome of an experiment is an objective classical fact 

available for anyone’s inspection why should Wigner and his friend assign 

different states to the same system? One might answer that they have different 

states of information. But, who has the right state of information? According to 

QBism, the whole puzzle stems from insisting on taking what are personal 

experiences as agent-independent objective facts. 

Moreover, as Ihde (1991) argues, the experimental instruments are not neutral 

windows on the world-in-itself. They are ‘hermeneutic devices’ that prepare and 

make readable what we call scientific objects (Ihde 1998; 149). Through the 

mediation of experimental instruments, our experience is already of an 

interpreted reality.   

Now we are ready to answer Brown’s criticism that QBism faces an explanatory 

gap regarding the objective description of the world. He claims that the question 

‘what was evolving in the early universe, if not quantum states?’ leads nowhere in 

QBism. Because according to QBism, quantum states are probability assignments 

of agents and there were no agents in the early universe to assign them. 

However, in the light of the above discussion, Brown’s criticism suffers from a 

misconception about science. It is exactly the misconception that QBism seeks to 

correct. Science is not a neutral description of a mind-independent world. All of 

our descriptions of the past and future of the world are nothing but our beliefs 

based on current experimental data and observations. And all these data and 

observations are obtained through experimental conditions that are without 

exception instrumentally-mediated which in turn means that we are already 

experiencing an interpreted reality. The experimental arrangement is the 

extended embodiment of the agent. Referring to the objective character of the 

experimental arrangements and the results obtained based on them to secure the 

elimination of the subjective element is doomed to failure. This maneuver could 

at best eliminate the role of particular agents but not the agent in general. One 

could say that our scientific facts are the beliefs of the scientific community. That 
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is, they are types of beliefs that could withstand intersubjective testing. To the 

question ‘what was going on in the early universe?’ the only answer is that what 

‘we say about the past’ is really a statement about what we expect for our 

futures. This belief is not and could not be about the early universe itself rather it 

concerns our model to account for current data and observations. Beyond and 

behind this conceptual model we have access to nothing in principle.5   

The charge of the existence of an explanatory gap in QBism stems from a 

particular conception of the nature of physical theories that QBists are not 

committed to. According to this representationalist view, theories must or do 

represent reality as it is in itself. Consequently, there is an explanatory gap in 

QBism because the quantum states represent degrees of belief of the agents and 

not reality. But, quantum theory is about the outcomes of the actions or 

interventions of the agents on the world. As Finkelstein (1996) puts it, ‘quantum 

physics is action physics’. A quantum state is a state of belief about the outcomes 

of the agent’s actions on the quantum system rather than a third-person 

representation of a reality in itself. This issue of representation and reality 

deserves more attention and will be considered more fully in the following 

section. 

 

4. Einstein’s Realism and QBists’ Realism 

Regarding the relation between QBism and Einstein’s philosophy of science, Fuchs 

points out that he ‘cannot see any way in which the program of QBism has ever 

contradicted what Einstein calls the program of “the real”.’ (Fuchs 2017a; 118)  

However, Brown argues that there is an essential difference between the 

program of QBism and Einstein’s program. According to QBists,  

‘… the best understanding of quantum theory is obtained by recognizing that 

quantum states, quantum time-evolution maps, and the outcomes of quantum 

measurements all live within what Einstein calls the subjective factor.’ (ibid., 119)  

                                                             
5
 . For more on this point see Section 4 and also Peierls (1991). 
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Brown claims that this is antithetical to Einstein’s program because it leaves the 

objective factor out. Brown believes that for Einstein, quantum states are 

probability distributions over hidden variables and these are the objective factor, 

i.e. correspond to concepts independent of perception.   

However, it is not the case that there is no objective factor in the QBists’ program. 

For QBists the objective factor is the quantum system which is a “real existence” 

external to the agent (Fuchs 2010). This point notwithstanding, Brown argues that 

the nature of the external world of QBism is ‘ineffable’ and so something of little 

interest to Einstein:  

‘The external physical systems float free of the quantum formalism. No 

describable objective attributes can be assigned to these systems in QBism, 

because, as we have seen, the universe is made of something other than quantum 

states, and quantum states are all we have in the formalism of quantum 

mechanics.’ (Brown 2017; 21) 

But, we think this argument is implausible. According to QBism, quantum 

mechanics deals with the experiences of the agents using quantum mechanics. In 

this view, the notion of an agent-independent reality is constructed through 

intersubjective testing of the experiences of agents. Different agents could 

communicate their experiences to each other and through intersubjective testing 

‘a common body of reality can be constructed’ (Fuchs et al., 2014). What we call 

‘the world’ is constructed from our intersubjective experiences. The quantum 

state represents ‘one’s probabilistic expectations for one’s subsequent 

experience’. This is the scope of our knowledge. And we use this knowledge to 

find our way through the maze of experience. As will be shown below, we do not 

think Einstein’s program is any different.  

In order to assess the plausibility of Brown’s criticism it is necessary to see what 

Einstein’s program of “the real” is. For Einstein,  

‘The aim of science is, on the one hand, a comprehension, as complete as 

possible, of the connection between the sense experiences in their totality, and, 



13 
 

on the other hand, the accomplishment of this aim by the use of a minimum of 

primary concepts and relations.’ (Einstein 1936; 352) 

In other words, according to Einstein’s program of the real, in physics we take the 

existence of sense impressions or experiences as given and try to understand the 

connections between them by constructing a conceptual system. This conceptual 

system has a layered structure. At the lowest level lie primary concepts which are 

‘directly and intuitively connected with typical complexes of sense experiences’. 

However, this first layer lacks logical unity. In order to supply our conceptual 

system with logical unity we invent concepts and relations which are only 

indirectly connected with sense experiences, i.e. retaining the primary concepts 

and relations as logically derived concepts and relations. Striving for more unity, 

we invent a tertiary level of concepts and relations for deduction of the concepts 

and relations of secondary and so indirectly of the primary layer. This process 

goes on until a conceptual system with greatest unity is achieved which is 

compatible with our sense experiences. We assume this aim in physics but there 

is no guarantee that it would result in a definite system.  

So, what is the real or the objective factor in Einstein’s program? It has to do with 

sense impressions because everything else is the free creation of human mind. 

Accordingly, Einstein (1949) defines the objective factor as the totality of those 

concepts and relations which are independent of the act of perception. But, what 

does it mean for a totality of concepts and relations to be independent of the act 

of perception? We think for an answer we should turn to what Max Born has to 

say about the concept of reality in physics:  

‘It presupposes that our sense impressions are not a permanent hallucination, but 

the indications of, or signals from, an external world which exists independently 

of us. Although these signals change and move in a most bewildering way, we are 

aware of objects with invariant properties. The set of these invariants of our 

sense impressions is the physical reality which our mind constructs in a perfectly 

unconscious way. This chair here looks different with each movement of my head, 

each twinkle of my eye, yet I perceive it as the same chair. Science is nothing else 
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than the endeavour to construct these invariants where they are not obvious.’ 

(Born 1949; 103-4)  

Einstein advocates a similar view:   

‘By the aid of speech different individuals can, to a certain extent, compare their 

experiences. In this way it is shown that certain sense perceptions of different 

individuals correspond to each other, while for other sense perceptions no such 

correspondence can be established. We are accustomed to regard as real those 

sense perceptions which are common to different individuals, and which 

therefore are, in a measure, impersonal. The natural sciences, and in particular, 

the most fundamental of them, physics, deal with such sense perceptions.’ 

(Einstein 1922; 1) 

 

Therefore, as Born (1953) emphasizes, ‘the idea of invariant is the clue to a 

rational concept of reality’. Similarly, according to QBism, the invariant in 

quantum mechanics is the Born rule. All agents should strive to form their 

probabilistic expectations of the consequences of their measurements such that 

the Born rule is satisfied. Violating the Born rule would result in disastrous 

consequences. Quantum mechanics grasps the real through the Born rule.   

 

So, we think what Einstein calls the ‘objective factor’ corresponds to what Born 

calls the ‘invariants of our sense impressions’. Both are defined by independence 

from the act of perception. For Einstein, the objective factor is what justifies the 

construction of conceptual systems, i.e. differentiates them from empty logical 

schemes. But, why for Einstein is not the objective factor the sense impressions 

themselves? It is because the sense impressions by themselves lack invariance. By 

constructing concepts and relations between them we achieve a degree of 

invariance and thereby  

‘We are able to orient ourselves in the labyrinth of sense impressions. These 

notions and relations, although free statements of our thoughts, appear to us as 

stronger and more unalterable than the individual sense experience itself, the 
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character of which as anything other than the result of an illusion or hallucination 

is never completely guaranteed.’ (Einstein 1936; 350, emphasis added)  

The important point, as Fine (1986) emphasizes, is that in Einstein’s program of 

the real there is nothing (such as an external reality) that stands ‘outside’ the 

conceptual system to which our concepts could be compared.6 We are situated in 

‘the labyrinth of sense impressions’ and it is the conceptual system that tells us 

what the reality is. As Einstein in a letter to Schrödinger in 19 June 1935 points 

out:  

‘The real difficulty lies therein that physics is a kind of metaphysics; physics 

describes “reality”. But we do not know what “reality” is; we only know it through 

physical description!’ (von Meyenn 2011, 537)  

To sum up, in both the QBists’ program and Einstein’s program, the aim of science 

is to guide us through the maze of experience and accordingly the sole 

justification for our theories or conceptual systems is their success in doing so 

(Fuchs 2017a; Einstein 1936). We do not see any essential difference between the 

two programs.  

However, one might object that according to Einstein’s program of the real we do 

know reality through physical description whereas on QBism that remains to be 

seen. But, here also there is no essential difference between the two programs. 

According to QBism, physical theories are not ‘attempts to directly represent 

(map, picture, copy, correspond to, correlate with) the universe—with “universe” 

here thought of in totality as a pre-existing, static system; an unchanging, 

monistic something that just is’ (Fuchs 2010). As Howard and Giovanelli (2019) 

emphasize, for Einstein, realism ‘is not a philosophical doctrine about the 

interpretation of scientific theories or the semantics of theoretical terms. For 

Einstein, realism is a physical postulate.’ This physical postulate is spatial 

separability, i.e., physical systems situated in different parts of space should (in 

theory) have an existence independent of each other. Finally, Einstein evaluates 

the prospects for the success of the program of the real thus:  

                                                             
6
 . See also Howard and Giovanelli (2019) especially Section 5. 
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‘Will this credo survive forever? It seems to me a smile is the best answer.’ 

(Einstein 1950; 758) 

That is, whether we could know reality through physical description in the ideal 

limit in which our theorizing finally result, remains to be seen. 

 

5. The Problem of the Evolution of the Quantum State 

Hitherto, we have discussed the epistemic nature of the quantum state and its 

consequences in the static case i.e. at a given time. In this section, we will discuss 

the time evolution of the quantum state according to QBism.  

According to QBism, quantum states are probability assignments of the agent 

concerning her expectations for the outcomes of measurements on the quantum 

system. Brown (2017) argues that QBism has no resources to account for the 

evolution of the quantum state. Suppose the quantum system evolves freely over 

an interval of time without any measurements taking place. It follows, Brown 

claims, that the probability assignments of the agent does not change during this 

interval because there are no measurements and consequently the agent does 

not receive new information to update her probability assignments. That is, in 

QBism there is no evolution of the quantum state during the interval between 

measurements. However, we know that the quantum state evolves during this 

interval according to the Schrödinger evolution. Brown criticizes this with the 

following comment,  

‘It is as if von Neumann’s two motions in quantum mechanics have reappeared in 

a different guise! The difference now is that the mystery lies with the unitary 

evolution.’ (Brown 2017; 17)  

But, we do not think that Brown’s argument is justified. In QBism, quantum states 

and evolutions along with the outcomes of measurements live on the subjective 

factor. According to QBism, just as quantum states are personal judgments the 

unitary time evolutions are personal judgments too. To see this, let us again 

consider equation (6) of Section 2. This equation expresses the agent’s 
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probabilities under the assumption that the SIC measurement is not performed. 

In other words, it is a conditional probability expressing a counterfactual 

situation. That is, the probabilities for the actual measurement outcomes  𝐸𝑗   

depend on the probabilities for the hypothetical SIC measurement outcomes 

𝑝 𝑂𝑖 . Now, let us make the actual measurement a unitarily rotated version of 

the SIC measurement. Then,  

𝐸𝑗 =  
1

𝑑
𝑈Π𝑗𝑈

†                                                                                                                    (8) 

which implies a simplification of equation (6) to,  

𝑄 𝐸𝑗  =  𝑑 + 1  𝑝 𝑂𝑖 𝑝 𝐸𝑗  𝑂𝑖 −
1

𝑑

𝑑2

𝑖=1

                                                                   (9) 

for the probabilities of the actual measurement outcomes (Fuchs and Stacey 

2019). Equation (9) shows that the unitary time evolution 𝑈 is a variant of the Law 

of Total Probability.7 This is because in the Schrödinger picture one could regard 

𝑝 𝑂𝑖  and 𝑄 𝐸𝑗   as the SIC representations for the initial and final quantum 

states under the evolution 𝑈. It should be emphasized that all the terms in 

equation (9) refer to the probability assignments that the agent makes at a single 

time, although these assignments are about the outcomes of a hypothetical SIC 

measurement that could happen at two different times in the future. So, the 

unitary time evolution 𝑈  is the personal judgment 𝑝 𝐸𝑗  𝑂𝑖 . Furthermore, it 

resolves the issue of why there should be two kinds of state evolution, one upon 

measurement and the other due to unitary evolution. As Fuchs (2010; 13) puts it, 

‘there are not two things that a quantum state can do, only one: Strive to be 

consistent with all the agent’s other probabilistic judgments on the consequences 

of his actions, factual and counterfactual’.  

Thus, unitarity is a consistency constraint guiding the agent on how to relate her 

beliefs about a measurement to be performed at different circumstances namely, 

a measurement that could be performed either at time 𝑡1 or at time 𝑡2 in the 

                                                             
7
 . See also Stacey (2016). 
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agent’s future. These beliefs are held by the agent simultaneously at a definite 

time. So, the unitary time evolution formula 

𝜌′ = 𝑈 𝑡 𝜌𝑈†(𝑡)                                                                                                            (10) 

guides the agent on how to relate her probability assignments for a measurement 

at 𝑡1 to her probability assignment for the same measurement at 𝑡2 using the 

unitary map 𝑈 𝑡 . 

More importantly, the real mystery with regard to the evolution of the quantum 

state is this: why unitarity in the first place? It has all to do with probabilities. As 

Hughes (1989, 115) illustrates if we ‘consider a state just as a probability function 

on a set of experimental questions’ along with a few other plausible assumptions 

we could derive the unitary structure of quantum theory. Further in this direction, 

Appleby et al. (2017) show that the unitary symmetry specifies all of the defining 

features of quantum theory. But why this symmetry group in particular? There is 

no satisfactory answer yet. That is, we know that regarding quantum states as 

‘catalogues of expectations’ and assuming unitarity one could reconstruct 

quantum theory. Formally, these two assumptions are our axioms.  

 

6. Conclusion  

In this paper, we have argued for the following claims. First, it is argued that the 

charge of the existence of an explanatory gap in QBism regarding the objective 

description of the world stems from a particular conception of the nature of 

physical theories that QBists are not committed to and seek to correct. According 

to this representationalist view, theories must or do represent reality as it is in 

itself. However, for QBists, quantum theory concerns what we expect from our 

actions or interventions on the world rather than a third-person representation of 

it. Moreover, this provides an answer to Brown’s ‘problem of the past’. That is, 

how can QBism account for events in the past history of the world? According to 

the QBist conception of scientific theories, what we say about the past ultimately 

concerns what we expect about the future. Our scientific beliefs about the past 

concern our conceptual models to account for the current data and observations. 
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Second, it is argued that there is no essential difference between Einstein’s 

program of the real and the QBists’ program. Drawing upon Born’s notion of 

invariance as the mark of the real, it is argued that both programs do regard and 

try to discover invariances as what is real or objective. Moreover, in both 

programs, the aim of scientific theories is to guide us through the maze of 

experience and accordingly the sole justification for our theories or conceptual 

systems is their success in doing so. Third, it has been shown how in QBism, just 

as quantum states are personal judgments, so it is with unitary time evolutions. 

Contra Brown, there is nothing more mysterious about unitary evolution than 

quantum collapse (i.e., state update due to measurement) or even the Born rule 

itself: they all have the character of normative principles. QBism is not so simply 

dismissed.  
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